Land - atmosphere COz exchange simulated by a land surface process model coupled to an atmospheric general circulation model

نویسنده

  • Gordon B. Bonan
چکیده

CO2 uptake during plant photosynthesis and CO2 loss during plant and microbial respiration were added to a land surface process model to simulate the diurnal and annual cycles of biosphere-atmosphere CO2 exchange. The model was coupled to a modified version of the National Center for Atmospheric Research Community Climate Model version 2, and the coupled model was run for 5 years. The geographic patterns of annual net primary production are qualitatively similar to other models. When compared by vegetation type, annual production and annual microbial respiration are consistent with other models, except for needleleaf evergreen tree vegetation, where production is too high, and semidesert vegetation, where production and microbial respiration are too low. The seasonality of the net CO2 flux agrees with other models in the southern hemisphere and the tropics. The diurnal range is large for photosynthesis and lower for plant and microbial respiration, which agrees with qualitative expectations. The simulation of the central United States is poor due to temperature and precipitation biases in the coupled model. Despite these deficiencies the current approach is a promising means to include terrestrial CO2 fluxes in a climate system model that simulates atmospheric CO2 concentrations, because it alleviates important parameterization discrepancies between standard biogeochemical models and the land surface models typically used in general circulation models, and because the model resolves the diurnal range of CO2 exchange, which can be large (15-45 t•mol CO 2 m -2 s 1).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Use of a Coupled Land Surface General Circulation Model to Examine the Impacts of Doubled Stomatal Resistance on the Water Resources of the American Southwest

Tiny openings on the surfaces of leaves, stomata, control the flux of CO2, water vapor, and other gases between the atmosphere and the earth’s vegetated surface. An increase in atmospheric CO2 could have an effect on stomatal openings, causing indirect changes in many surface hydroclimatogical variables that could be comparable in magnitude to the direct radiative effects. Increased atmospheric...

متن کامل

Development of a coupled land–atmosphere satellite data assimilation system for improved local atmospheric simulations

This study developed a coupled land–atmosphere satellite data assimilation system as a new physical downscaling approach, by coupling a mesoscale atmospheric model with a land data assimilation system (LDAS). The LDAS consists of a land surface scheme as the model operator, a radiative transfer model as the observation operator, and the simulated annealing method for minimizing the difference b...

متن کامل

Atmosphere-only GCM (ACCESS1.0) simulations with prescribed land surface temperatures

General circulation models (GCMs) are valuable tools for understanding how the global ocean–atmosphere– land surface system interacts and are routinely evaluated relative to observational data sets. Conversely, observational data sets can also be used to constrain GCMs in order to identify systematic errors in their simulated climates. One such example is to prescribe sea surface temperatures (...

متن کامل

The land surface model component of ACCESS: description and impact on the simulated surface climatology

The land surface component of the Australian Community Climate and Earth System Simulator (ACCESS) is one difference between the two versions of ACCESS used to run simulations for the Coupled Model Intercomparison Project (CMIP5). The Met Office Surface Exchange Scheme (MOSES) and the Community Atmosphere Biosphere Land Exchange (CABLE) model are described and compared. The impact on the simula...

متن کامل

Simulated impacts of land cover change on summer climate in the Tibetan Plateau

The Tibetan Plateau (TP) is a key region of land–atmosphere interactions with severe eco-environment degradation. This study uses an atmospheric general circulation model, NCEP GCM/SSiB, to present the major TP summer climate features for six selected ENSO years and preliminarily assess the possible impact of land cover change on the summer circulation over the TP. Compared to Reanalysis II dat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007